Control basado en PID inteligentes: aplicación al control de crucero de un vehículo a bajas velocidades
DOI:
https://doi.org/10.1016/S1697-7912(10)70059-5Palabras clave:
Controladores PID, Sistemas de control no lineales, Vehículos autónomos, Control de velocidadResumen
A pesar de sus limitaciones, la técnica de control más utilizada en el mundo industrial sigue siendo todavía hoy el control PID. En este artículo se presenta un nuevo enfoque, el control basado en PID inteligentes (i-PID), que aprovecha las virtudes que han hecho tan popular al PID, mejorando uno de sus puntos débiles: la perdida de prestaciones en presencia de términos no-lineales o de dinámicas no modeladas. Para ilustrar las características del i-PID, se ha probado su comportamiento en una aplicación real, el control robusto de velocidad sobre un vehículo experimental en entornos urbanos.Descargas
Citas
Abou-Jaoude, R. (2003). Acc radar sensor technology, test requirements, and test solutions. IEEE Transactions on Intelligent Transportation Systems 4(3), 115–122.
Aström, K.J. and T. Hägglund (2006). Advanced PID Controllers. Instrument Soc. Amer.
Bechtel (1993). Compendium of executive summaries from the maglev system concept deſnition ſnal reports. Technical report. U.S. Department of Transportation.
Broquère, X., D. Sidobre and I. Herrera-Aguilar (2008). Soft motion trajectory planner for service manipulator robot. En: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Choi, S., B. D’Andréa-Novel, M. Fliess, H. Mounier and J. Villagra (2009). Model-free control of automotive engine and brake for stop-and-go scenarios. En: European Control Conference. pp. 3622–3627.
Fliess, M. and C. Join (2008a). Intelligent PID controllers. En: Proc. of the 16th Mediterranean Conference on Control and Automation. pp. 326–331.
Fliess, M. and C. Join (2008b). Non-linear estimation is easy. International Journal of Modelling, Identiſcation and Control 4, 12–27.
Fliess, M. and C. Join (2009). Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control?. En: Proc. of the 15th IFAC Symposium on System Identiſcation (SYSID).
Fliess, M., C. Join and Sira-Ramirez H. (2006). Complex continuous nonlinear systems: their black box identiſcation and their control. En: Proc. of the 14th IFAC Symposium on System Identiſcation (SYSID). Vol. 14.
Fritz, H. (1996). Neural speed control for autonomous road vehicles. Control Engineering Practice 4(4), 507–512.
Huang, S. and W. Ren (1999). Vehicle longitudinal control using throttles and brakes. Robotics and autonomous systems 26(4), 241–253.
Hunt, K.J., T.A. Johansen, J. Kalkkuhl, H. Fritz and T. Gottsche (2000). Speed control design for an experimental vehicle using a generalized gain scheduling approach. IEEE Transactions on Control Systems Technology 8(3), 381–395.
Ishida, A., M. Takada, K. Narazaki and O. Ito (1992). A selftuning automotive cruise control system using the time delay controller. Technical Report 920159. SAE International.
Kiencke, U. and L. Nielsen (2005). Automotive Control Systems. Springer.
Lee, G. and S.W. Kim (2002). A longitudinal control system for a platoon of vehicles using a fuzzy-sliding mode control. Mechatronics 12, 97–118.
Liang, H., K. To Chong, T. Soo No and S.Y. Yi (2003). Vehicle longitudinal brake control using variable parameter sliding control. Control Engineering Practice 11(4), 403–411.
Liu, S. (2002). An on-line reference-trajectory generator for smooth motion of impulse-controlled industrial manipulators. En: Proc. of the 7th International Workshop on Advanced Motion Control. pp. 365– 370.
Mboup, M., C. Join and M. Fliess (2009). Numerical differentiation with annihilators in noisy environment. Numerical Algorithms 50(4), 439–467.
Milanés, V., E. Onieva, J. Pérez, T. de Pedro and C González (2009). Control de velocidad adaptativo para entornos urbanos congestionados. Revista Iberoamericana de Automática e Informática Industrial 6(4), 66–73.
Onieva, E., V. Milanés, J. Pérez and M. T. de Pedro (2010). Estimación de un control lateral difuso de vehículos. Revista iberoamericana de automática e informática industrial (RIAI) 7(2), 25–33.
Pacejka, H.B. and E. Bakker (2004). The magic formula tyre model. Vehicle system dynamics 21, 1–18.
Pérez, J., V. Milanés, E. Onieva, J. Alonso and M. T. de Pedro (2010). Adelantamiento con vehículos autónomos en carreteras de doble sentido. Revista iberoamericana de automática e informática industrial (RIAI) 7(3), 91–98.
Rajamani, R. (2005). Vehicle Dynamics And Control. Springer.
Sotelo, M. A., D. Fernandez, J. E. Naranjo, C. Gonzalez, R. Garcia, T. de Pedro and J. Reviejo (2004). Vision-based adaptive cruise control for intelligent road vehicles. En: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004). Vol. 1. pp. 64–69.
Swaroop, D., J.K. Hedrick and S.B. Choi (2001). Direct adaptive longitudinal control of vehicle platoons. IEEE Transactions on Vehicular Technology 50(1), 150–161.
Vahidi, A. and A. Eskandarian (2003). Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems 4(3), 143–153.
Villagra, J., B. D’Andréa-Novel, Choi S., M. Fliess and H. Mounier (2009). Robust stop and go control strategy: an algebraic approach for nonlinear estimation and control. International Journal of Vehicle Autonomous Systems 7(3– 4), 270–291.
Villagra, J., B. d’Andréa Novel, M. Fliess and H. Mounier (2008). Robust grey-box closed-loop stop-and-go control. En: Proc. of the 47th IEEE Conference on Decision and Control.
Woll, J. (1997). Radar based adaptive cruise control for truck applications. SAE Transactions 106(2), 426–430.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)