Muestreo y comunicación: impacto en el control de formaciones en sistemas multi-robot heterogéneos

Autores/as

DOI:

https://doi.org/10.4995/riai.2023.20155

Palabras clave:

Sistema Multi-Robot, Control de Formación, Control basado en eventos

Resumen

Este trabajo presenta el análisis del efecto de la frecuencia de muestreo y comunicación en un sistema multi-robot (SMR) en su desempeño temporal y en la carga computacional. El sistema experimental está compuesto por robots móviles del tipo Khepera IV y robots aéreos del tipo Crazyflie 2.1. El análisis se realiza sobre el movimiento del SMR desde unas condiciones iniciales hasta una formación deseada, que se define en base a un conjunto de distancias relativas deseadas entre agentes. Se evalúan tres escenarios en relación a la arquitectura del nivel de control: centralizado, distribuido en ROS 2 y distribuido a bordo del robot. Se determina la frecuencia mínima operativa para un muestreo periódico, y se presenta un protocolo de muestreo basado en eventos como propuesta para la reducción de transmisiones de mensajes. Para este caso, se determina un umbral constante óptimo, con un desempeño temporal equivalente al muestreo periódico óptimo, pero con una reducción del muestreo de un 80%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amsters, R., Slaets, P., 2020. Turtlebot 3 as a robotics education platform. In: Robotics in Education. Springer, Cham, Switzerland, pp. 170-181. https://doi.org/10.1007/978-3-030-26945-6

Anderson, B. D., Yu, C., Fidan, B., Hendrickx, J. M., 2008. Rigid graph control architectures for autonomous formations. IEEE Control Systems Magazine 28 (6), 48-63. https://doi.org/10.1109/MCS.2008.929280

Aranda, M., López-Nicolás, G., Sagüés, C., Mezouar, Y., 2015. Formation control of mobile robots using multiple aerial cameras. IEEE Transactions on Robotics 31 (4), 1064-1071. https://doi.org/10.1109/TRO.2015.2452777

Aranda-Escolastico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sánchez, J., Dormido, S., 2020. Event-based control: A bibliometric analysis of twenty years of research. IEEE Access 8, 47188-47208. https://doi.org/10.1109/ACCESS.2020.2978174

Bansal, S., Akametalu, A. K., Jiang, F. J., Laine, F., Tomlin, C. J., 2016. Learning quadrotor dynamics using neural network for flight control. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, Las Vegas, NV, USA, pp. 4653-4660. https://doi.org/10.1109/CDC.2016.7798978

Barra, J., Scorletti, G., Lesecq, S., Zarudniev, M., Blanco, E., 2020. Attraction domain estimation of linear controllers for the attitude control of vtol vehicles: P/pi control of a quadrotor. In: 2020 European Control Conference (ECC). IEEE, St. Petersburg, Russia, pp. 1644-1649. https://doi.org/10.23919/ECC51009.2020.9143612

Bogdan, P., Marculescu, R., 2011. Towards a science of cyber-physical systems design. In: 2011 IEEE/ACM Second international conference on cyberphysical systems, Chicago, IL, USA. IEEE, Chicago, IL, USA, pp. 99-108. https://doi.org/10.1109/ICCPS.2011.14

Budaciu, C., Botezatu, N., Kloetzer, M., Burlacu, A., 2019. On the evaluation of the crazyflie modular quadcopter system. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, Zaragoza, Spain, pp. 1189-1195. https://doi.org/10.1109/ETFA.2019.8869202

Chee, K. Y., Jiahao, T. Z., Hsieh, M. A., 2022. Knode-mpc: A knowledge-based data-driven predictive control framework for aerial robots. IEEE Robotics and Automation Letters 7 (2), 2819-2826. https://doi.org/10.1109/LRA.2022.3144787

Cornejo, J., Magallanes, J., Denegri, E., Canahuire, R., 2018. Trajectory tracking control of a differential wheeled mobile robot: a polar coordinates control and lqr comparison. In: 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON). IEEE, Lima, Peru, pp. 1-4. https://doi.org/10.1109/INTERCON.2018.8526366

Cortés, J., Egerstedt, M., 2017. Coordinated control of multi-robot systems: A survey. SICE Journal of Control, Measurement, and System Integration 10 (6), 495-503. https://doi.org/10.9746/jcmsi.10.495

Didier, A., Parsi, A., Coulson, J., Smith, R. S., 2021. Robust adaptive model predictive control of quadrotors. In: 2021 European Control Conference (ECC). IEEE, Delft, Netherlands, pp. 657-662. https://doi.org/10.23919/ECC54610.2021.9654893

Fidan, B., Yu, C., Anderson, B. D., 2007. Acquiring and maintaining persistence of autonomous multi-vehicle formations. IET Control Theory & Applications 1 (2), 452-460. https://doi.org/10.1049/iet-cta:20050409

Garcia, G. A., Kim, A. R., Jackson, E., Keshmiri, S. S., Shukla, D., 2017. Modeling and flight control of a commercial nano quadrotor. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, Miami, FL, USA, pp. 524-532. https://doi.org/10.1109/ICUAS.2017.7991439

Giernacki, W., Rao, J., Sladic, S., Bondyra, A., Retinger, M., Espinoza-Fraire, T., 2022. Dji tello quadrotor as a platform for research and education in mobile robotics and control engineering. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, Dubrovnik, Croatia, pp. 735-744. https://doi.org/10.1109/ICUAS54217.2022.9836168

Giernacki, W., Skwierczynsky, M., Witwicki, W., Wronski, P., Kozierski, P., 2017. Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, Miedzyzdroje, Poland, pp. 37-42. https://doi.org/10.1109/MMAR.2017.8046794

Grasso, P., Innocente, M. S., Tai, J. J., Haas, O., Dizqah, A. M., 2022. Analysis and accuracy improvement of uwb-tdoa-based indoor positioning system. Sensors 22 (23), 9136. https://doi.org/10.3390/s22239136

Guinaldo, M., Dimarogonas, D. V., Johansson, K. H., Sánchez, J., Dormido, S., 2013. Distributed event-based control strategies for interconnected linear systems. IET Control Theory & Applications 7 (6), 877-886. https://doi.org/10.1049/iet-cta.2012.0525

Guinaldo, M., Sánchez, J., Dormido, S., 2017. Control en red basado en eventos: de lo centralizado a lo distribuido. Revista Iberoamericana de Automática e Inform'áica Industrial 14 (1), 16-30. https://doi.org/10.1016/j.riai.2016.09.007

Hasseni, S.-E.-I., Abdou, L., Glida, H.-E., 2021. Parameters tuning of a quadrotor pid controllers by using nature-inspired algorithms. Evolutionary Intelligence 14, 61-73. https://doi.org/10.1007/s12065-019-00312-8

Heemels, W. P., Johansson, K. H., Tabuada, P., 2012. An introduction to eventtriggered and self-triggered control. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). IEEE, Maui, HI, USA, pp. 3270-3285. https://doi.org/10.1109/CDC.2012.6425820

Heikkinen, J., Minav, T., Stotckaia, A. D., 2017. Self-tuning parameter fuzzy pid controller for autonomous differential drive mobile robot. In: 2017 XXIEEE international conference on soft computing and measurements (SCM). IEEE, St. Petersburg, Russia, pp. 382-385. https://doi.org/10.1109/SCM.2017.7970592

Krick, L., Broucke, M. E., Francis, B. A., 2009. Stabilisation of infinitesimally rigid formations of multi-robot networks. International Journal of Control 82 (3), 423-439. https://doi.org/10.1080/00207170802108441

Lamraoui, H. C., Qidan, Z., Benrabah, A., 2017. Dynamic velocity tracking control of differential-drive mobile robot based on ladrc. In: 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, Okinawa, Japan, pp. 633-638. https://doi.org/10.1109/RCAR.2017.8311934

Leonard, N. E., Paley, D. A., Lekien, F., Sepulchre, R., Fratantoni, D. M., Davis, R. E., 2007. Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE 95 (1), 48-74. https://doi.org/10.1109/JPROC.2006.887295

Mañas-Álvarez, F. J., Guinaldo, M., Dormido, R., Dormido-Canto, S., 2023. Scalability of cyber-physical systems with real and virtual robots in ros 2. Sensors 23 (13), 6073. https://doi.org/10.3390/s23136073

Mañas-Álvarez, F.-J., Guinaldo, M., Dormido, R., Socas, R., Dormido, S., 2022. Formation by consensus in heterogeneous robotic swarms with twinsin- the-loop. In: ROBOT2022: Fifth Iberian Robotics Conference. Springer, Cham, Switzerland, pp. 435-447. https://doi.org/10.1007/978-3-031-21065-5

Mañas-Álvarez, F.-J., Guinaldo, M., Dormido, R., Dormido, S., 2023. Robotic park: Multi-agent platform for teaching control and robotics. IEEE Access 11, 34899-34911. https://doi.org/10.1109/ACCESS.2023.3264508

Nguyen, N. P., Lee, B. H., Xuan-Mung, N., Ha, L. N. N. T., Jeong, H. S., Lee, S. T., Hong, S. K., 2022. Persistent charging system for crazyflie platform. Drones 6 (8), 212. https://doi.org/10.3390/drones6080212

Oh, K.-K., Park, M.-C., Ahn, H.-S., 2015. A survey of multi-agent formation control. Automatica 53, 424-440. https://doi.org/10.1016/j.automatica.2014.10.022

Pichierri, L., Testa, A., Notarstefano, G., 2023. Crazychoir: Flying swarms of crazyflie quadrotors in ros 2. IEEE Robotics and Automation Letters 8 (8), 4713-4720. https://doi.org/10.1109/LRA.2023.3286814

Ren, W., Sorensen, N., 2008. Distributed coordination architecture for multirobot formation control. Robotics and Autonomous Systems 56 (4), 324- 333. https://doi.org/10.1016/j.robot.2007.08.005

Silano, G., Aucone, E., Iannelli, L., 2018. Crazys: a software-in-the-loop platform for the crazyflie 2.0 nano-quadcopter. In: 2018 26th Mediterranean Conference on Control and Automation (MED). IEEE, Zadar, Croatia, pp. 1-6. https://doi.org/10.1109/MED.2018.8442759

Soares, J. M., Navarro, I., Martinoli, A., 2016. The khepera iv mobile robot: performance evaluation, sensory data and software toolbox. In: Robot 2015: Second Iberian Robotics Conference: Advances in Robotics, Volume 1. Springer, Cham, Switzerland, pp. 767-781. https://doi.org/10.1007/978-3-319-27146-0

Stefek, A., Pham, V. T., Krivanek, V., Pham, K. L., 2021. Optimization of fuzzy logic controller used for a differential drive wheeled mobile robot. Applied Sciences 11 (13), 6023. https://doi.org/10.3390/app11136023

Taffanel, A., Rousselot, B., Danielsson, J., McGuire, K., Richardsson, K., Eliasson, M., Antonsson, T., H¨onig, W., 2021. Lighthouse positioning system: Dataset, accuracy, and precision for uav research. In: ICRA Workshop on Robot Swarms in the Real World. ArXiv. DOI: 10.48550/arXiv.2104.11523

Vázquez, U., González-Sierra, J., Fernández-Anaya, G., Hernández-Martínez, E. G., 2021. Análisis del desempeño de un control pid de orden fraccional en un robot móvil diferencial. Revista Iberoamericana de Automática e Informática Industrial 19 (1), 74-83. https://doi.org/10.4995/riai.2021.15036

Vicon Motion Systems, 2022. Accuracy in motion. [Consulta el 01-07-2023]. URL: https://www.vicon.com/wp-content/uploads/2022/07/Vicon-Metrology-Solutions.pdf

Vágner, M., Palkovics, D., Kovács, L., 2022. 3d localization and data quality estimation with marvelmind. In: 2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS). IEEE, Debrecen, Hungary, pp. 302- 307. https://doi.org/10.1109/CITDS54976.2022.9914386

Zekry, O. H., Attia, T., Hafez, A. T., Ashry, M., 2023. Pid trajectory tracking control of crazyflie nanoquadcopter based on genetic algorithm. In: 2023 IEEE Aerospace Conference. IEEE, Big Sky, MT, USA, pp. 1-8. https://doi.org/10.1109/AERO55745.2023.10115538

Descargas

Publicado

16-10-2023

Cómo citar

Mañas Álvarez, F. J., Guinaldo, M., Dormido, R. y Dormido, S. (2023) «Muestreo y comunicación: impacto en el control de formaciones en sistemas multi-robot heterogéneos», Revista Iberoamericana de Automática e Informática industrial. doi: 10.4995/riai.2023.20155.

Número

Sección

Artículos

Datos de los fondos