Control predictivo en microrredes interconectadas y con vehículos eléctricos
DOI:
https://doi.org/10.4995/riai.2020.13304Palabras clave:
Microrredes, Control de recursos de energía renovable, Interacción dinámica de plantas de potencia, Control Predictivo, Sistemas Multi-Agente, Redes Inteligentes, Operación óptima y control de sistemas de potencia, Control inteligente de sistemas deResumen
La microrred como elemento agregador de fuentes de generación, cargas y sistemas de almacenamiento de energía aparece como tecnología clave para dotar a los sistemas eléctricos de suficiente flexibilidad para una transición energética basada en fuentes renovables. Sin embargo, el problema de control para la gestión de energía se vuelve complejo cuando se incrementa el número de sistemas conectados a una misma microrred. De igual forma, se requiere flexibilidad para integrar a los vehículos eléctricos. La interacción entre las distintas microrredes y los vehículos hacen necesarias herramientas avanzadas de control para resolver el problema de optimización. El objeto del presente trabajo es presentar distintas herramientas de control predictivo basado en el modelo (Model Predictive Control, MPC) para resolver el problema de control asociado a este tipo de sistemas. En concreto, se abordan dos problemas: la conexión de vehículos eléctricos a la microrred y la interconexión de varias microrredes. Para el primer caso se analizan dos escenarios, según que el intercambio de energía sea uni o bidireccional y se presenta la forma de optimizar la operación usando MPC. En el segundo caso se aborda el problema usando técnicas de control distribuido.
Descargas
Citas
Alvarado, I., Limon, D., de la Peña, D. M., Maestre, J., Ridao, M., Scheu, H., Marquardt, W., Negenborn, R., Schutter, B. D., Valencia, F., Espinosa, J., 2011. A comparative analysis of distributed mpc techniques applied to the hd-mpc four-tank benchmark. Journal of Process Control 21 (5), 800 - 815, special Issue on Hierarchical and Distributed Model Predictive Control. https://doi.org/10.1016/j.jprocont.2011.03.003
Bashash, S., Fathy, H., 2011. Robust demand-side plug-in electric vehicle load control for renewable energy management. American Control Conference (ACC), 929-934. https://doi.org/10.1109/ACC.2011.5990856
Bazmohammadi, N., Tahsiri, A., Anvari-Moghaddam, A., Guerrero, J. M., 2019. A hierarchical energy management strategy for interconnected microgrids considering uncertainty. International Journal of Electrical Power & Energy Systems 109, 597-608. https://doi.org/10.1016/j.ijepes.2019.02.033
Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., 2016. Diagnosis and Fault-Tolerant Control. Springer. https://doi.org/10.1007/978-3-662-47943-8
Bordons, C., Garcia-Torres, F., Ridao, M. A., 2020. Model Predictive Control of Microgrids. Springer, Londres. https://doi.org/10.1007/978-3-030-24570-2
Bordons, C., Garcia-Torres, F., Valverde, L., 2015. Optimal energy management for renewable energy microgrids. Revista Iberoamericana de Automatica e Informatica industrial 12 (2), 117-132. https://doi.org/10.1016/j.riai.2015.03.001
Bouzid, A., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., Benghanem, M., 2015. A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews 44, 751 - 766. https://doi.org/10.1016/j.rser.2015.01.016
Camponogara, E., Jia, D., Krogh, B. H., Talukdar, S., 2002. Distributed model predictive control. IEEE Control Systems 22 (1), 44-52. https://doi.org/10.1109/37.980246
Cheng, P., Shi, L., Sinopoli, B., 2017. Special issue on secure control of cyberphysical systems. IEEE Trans on Control of Network Systems 4 (1). https://doi.org/10.1109/TCNS.2017.2667233
Colson, C. M., Nehrir, M. H., 2013. Comprehensive real-time microgrid power management and control with distributed agents. IEEE Transactions on Smart Grid 4 (1), 617-627. https://doi.org/10.1109/TSG.2012.2236368
Deilami, S., Masoum, A. S., Moses, P. S., Masoum, M., 2011. Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans. on Smart Grid 2 (3), 456-467. https://doi.org/10.1109/TSG.2011.2159816
Duarte-Mermoud, M. A., Milla, F., 2018. Estabilizador de sistemas de potencia usando control predictivo basado en modelo. Revista Iberoamericana de Automática e Informática industrial 15 (3), 286-296. https://doi.org/10.4995/riai.2018.10056
Fathi, M., Bevrani, H., 2013. Statistical cooperative power dispatching in interconnected microgrids. IEEE Transactions on Sustainable Energy 4 (3), 586-593. https://doi.org/10.1109/TSTE.2012.2232945
Galus, M. D., Andersson, G., Art, S., 2012. A hierarchical, distributed pev charging control in low voltage distribution grids to ensure network security. Power and Energy Society General Meeting, 2012 IEEE, 1-8. https://doi.org/10.1109/PESGM.2012.6345024
Garcia-Torres, F., Vilaplana, D. G., Bordons, C., Roncero-Sanchez, P., Ridao, M. A., 2018. Optimal management of microgrids with external agents including battery/fuel cell electric vehicles. IEEE Transactions on Smart Grid, 1-1.
Gautschi, M., Scheuss, O., Schluchter, C., 2009. Simulation of an agent based vehicle-to-grid (v2g) implementation. Electric Power Systems Research 120, 177 - 183.
Giorgio, A. D., Liberati, F., Canale, S., 2014. Electric vehicle charging control in smartgrids: A model predictive control approach. Control Engineering Practice 22, 147-162. https://doi.org/10.1016/j.conengprac.2013.10.005
Guerrero, J. M., Chandorkar, M., Lee, T.-L., Loh, P. C., 2012a. Advanced control architectures for intelligent microgrids?part i: Decentralized and hierarchical control. IEEE Transactions on Industrial Electronics 60 (4), 1254-1262. https://doi.org/10.1109/TIE.2012.2194969
Guerrero, J. M., Loh, P. C., Lee, T.-L., Chandorkar, M., 2012b. Advanced control architectures for intelligent microgrids?part ii: Power quality, energy storage, and ac/dc microgrids. IEEE Transactions on Industrial Electronics 60 (4), 1263-1270. https://doi.org/10.1109/TIE.2012.2196889
Hu, J., You, S., Lind, M., Østergaard, J., 2014. Coordinated charging of electric vehicles for congestion prevention in the distribution grid. IEEE Transactions on Smart Grid 5 (2), 703-711. https://doi.org/10.1109/TSG.2013.2279007
Issermann, R., 2006. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer.
Ito, A., Kawashima, A., Suzuki, T., Inagaki, S., Yamaguchi, T., Zhou, Z., 2018. Model predictive charging control of in-vehicle batteries for home energy management based on vehicle state prediction. IEEE Transactions on Control Systems Technology 26 (1), 51-64. https://doi.org/10.1109/TCST.2017.2664727
Lasseter, R. H., 2002. Microgrids. IEEE Power Engineering Society Winter Meeting 1, 305-308.
Lasseter, R. H., 2011. Smart distribution: Coupled microgrids. Proceedings of the IEEE 99 (6), 1074-1082. https://doi.org/10.1109/JPROC.2011.2114630
Maestre, J. M., Negenborn, R. R., 2014. Distributed Model Predictive Control Made Easy. Springer-Verlag, London. https://doi.org/10.1007/978-94-007-7006-5
Mendes, P., Valverde, L., Bordons, C., Normey-Rico, J., 2016. Energy management of an experimental microgrid coupled to a v2g system. Journal of Power Sources 327, 702 - 713. https://doi.org/10.1016/j.jpowsour.2016.07.076
Mesbah, A., Dec 2016. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Systems Magazine 36 (6), 30-44. https://doi.org/10.1109/MCS.2016.2602087
Mohsenian-Rad, H., et al., 2015. Optimal charging of electric vehicles with uncertain departure times: A closed-form solution. IEEE Transactions on Smart Grid 6 (2), 940-942. https://doi.org/10.1109/TSG.2014.2367242
Mou, Y., Xing, H., Lin, Z., Fu, M., 2015. Decentralized optimal demand-side management for phev charging in a smart grid. IEEE Transactions on Smart Grid 6 (2), 726-736. https://doi.org/10.1109/TSG.2014.2363096
Mwasilu, F., Justo, J. J., Kim, E.-K., Do, T. D., Jung, J.-W., 2014. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and sustainable energy reviews 34, 501-516. https://doi.org/10.1016/j.rser.2014.03.031
N. Nikmehr and S. N. Ravadanegh, 2016. Reliability evaluation of multimicrogrids considering optimal operation of small scale energy zones under load-generation uncertainties. International Journal of Electrical Power & Energy Systems 78, 80-87. https://doi.org/10.1016/j.ijepes.2015.11.094
Negenborn, R. R., Houwing, M., Schutter, B. D., Hellendoorn, J., 2009. Model predictive control for residential energy resources using a mixed-logical dynamic model. International Conference on Networking, Sensing and Control, 702-707. https://doi.org/10.1109/ICNSC.2009.4919363
Nunna, H. K., Doolla, S., 2012. Multiagent-based distributed-energy-resource management for intelligent microgrids. IEEE Transactions on IndustrialElectronics 60 (4), 1678-1687. https://doi.org/10.1109/TIE.2012.2193857
Ouammi, A., Dagdougui, H., Sacile, R., 2015. Optimal control of power flows and energy local storages in a network of microgrids modeled as a system of systems. IEEE Transactions on Control Systems Technology 23 (1), 128-138. https://doi.org/10.1109/TCST.2014.2314474
Pahasa, J., Ngamroo, I., 2015. Phevs bidirectional charging/discharging and soc control for microgrid frequency stabilization using multiple mpc. IEEE Transactions on Smart Grid 6 (2), 526-533. https://doi.org/10.1109/TSG.2014.2372038
Parisio, A., Rikos, E., Glielmo, L., 2014. A model predictive control approach to microgrid operation optimization. IEEE Transactions on Control Systems Technology 22 (5), 1813-1827. https://doi.org/10.1109/TCST.2013.2295737
Parisio, A., Rikos, E., Glielmo, L., 2016. Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study. Journal of Process Control 43, 24 - 37. https://doi.org/10.1016/j.jprocont.2016.04.008
Reddy, S. S., Sandeep, V., Jung, C., Jun 2017. Review of stochastic optimization methods for smart grid. Frontiers in Energy 11 (2), 197-209. https://doi.org/10.1007/s11708-017-0457-7
Sandberg, H., Amin, S., Johansson, K., 2015. Special issue on cyberphysical security in networked control systems. IEEE Control Syst. Mag. 35 (1). https://doi.org/10.1109/MCS.2014.2364693
Scattolini, R., 2009. Architectures for distributed and hierarchical model predictive control - a review. Journal of Process Control 19, 723 - 731. https://doi.org/10.1016/j.jprocont.2009.02.003
UNFCCC, 2015. Adoption of the paris agreement fccc/cp/2015/l. 9/rev. 1. 1.
Valverde, L., Bordons, C., Rosa, F., Jan 2016. Integration of fuel cell technologies in renewable-energy-based microgrids optimizing operational costs and durability. IEEE Transactions on Industrial Electronics 63 (1), 167-177. https://doi.org/10.1109/TIE.2015.2465355
Venkat, A., Rawlings, J., Wright, S., 2007. ch. Distributed Model Predictive Control of Large-Scale Systems Assessment and Future Directions. Springer-Verlag, Berlin.
Wang, G., Zhao, J., Wen, F., Xue, Y., Ledwich, G., 2015. Dispatch strategy of phevs to mitigate selected patterns of seasonally varying outputs from renewable generation. IEEE Transactions on Smart Grid 6 (2), 627-639. https://doi.org/10.1109/TSG.2014.2364235
Wu, J., Guan, X., 2013. Coordinated multi-microgrids optimal control algorithm for smart distribution management system. IEEE Transactions on Smart Grid 4 (4), 2174-2181. https://doi.org/10.1109/TSG.2013.2269481
Xu, J., Zou, Y., Niu, Y., 2013. Distributed predictive control for energy management of multi-microgrids systems. In: 13th IFAC Symposium on Large Scale Complex Systems: Theory ans Applications, Shanghai, China. pp. 551-556. https://doi.org/10.3182/20130708-3-CN-2036.00090
Yazdanian, M., Mehrizi-Sani, A., 2014. Distributed control techniques in microgrids. IEEE Transactions on Smart Grid 5 (6), 2901-2909. https://doi.org/10.1109/TSG.2014.2337838
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)