Nuevo vehículo aéreo autónomo estable por construcción: configuración y modelo dinámico

Autores/as

DOI:

https://doi.org/10.4995/riai.2020.11603

Palabras clave:

Estabilidad, Vehículo aéreo no tripulado (UAV), Modelo Dinámico, Actuadores

Resumen

En los últimos años, diferentes estrategias y modelos matemáticos se han desarrollado para analizar y controlar vehículos aéreos no tripulados. Este artículo amplía este panorama al enfocarse en un sistema aéreo no tripulado estable por construcción. Gracias a su diseño, el sistema reportado disipa la energía recibida por la acción de perturbaciones externas. El vehículo propuesto tiene un rotor único para el desarrollo de diferentes modos de vuelo. Este artículo reporta el concepto de diseño del sistema aéreo, la estructura de su modelo dinámico de nueve grados de libertad, un conjunto de simulaciones numéricas que permiten analizar el comportamiento del modelo desarrollado y los primeros resultados experimentales que validan la estabilidad por construcción del vehículo aéreo. Los dos aspectos más significativos e innovadores reportados en este artículo son el uso de un rotor único orientable para la ejecución de diferentes modos de vuelo y la propiedad inherente del sistema que lo hace estable por construcción.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

E. Sanchez-Fontes, Universidad Autónoma del Estado de México

Facultad de ingeniería

Departamento de Bioingeniería Médica, Profesor de asignatura.

J.C. Avila Vilchis, Universidad Autónoma del Estado de México.

Facultad de ingeniería

Profesor-Investigador. Maestría y Doctorado en Ciencias de la Ingeniería.

A.H. Vilchis-González, Universidad Autónoma del Estado de México

Facultad de ingenieríaProfesor-Investigador. Maestría y Doctorado en Ciencias de la Ingeniería.

B. Saldivar, Universidad Autónoma del Estado de México

Facultad de ingeniería

Profesor-investigador de cátedras CONACYT

J.M. Jacinto-Villegas, Universidad Autónoma del Estado de México

Facultad de ingeniería

Profesor-investigador de cátedras CONACYT

R. Martínez-Mendez, Universidad Autónoma del Estado de México

Facultad de ingeniería

Profesor-Investigador. Maestría y Doctorado en Ciencias de la Ingeniería.

Citas

Apkarian, J., Sep. 2010. Aerial vehicle. Patent US 2010/0224723 A1, Bereskin and Parr LLP/S.E.N.C.R.L., s.r.l. 40 King Street West, Box 401 Toronto, onM5H 3Y2.

Austin, R., 2010. Unmanned Aircraft Systems: UAVs Design, Development and Deployment. AIAA education series. American Institute of Aeronautics and Astronautics. https://doi.org/10.1002/9780470664797

Avila Vilchis, J. C., Sanchez-Fontes, E., Vilchis González, A. H., Saldivar, B., Martinez-Mendez, R., 2018. Dispositivo aéreo de rotor único. Patent application MX/a/2018/012344, Universidad Autónoma del Estado de México, México.

Briod, A., Klaptocz, A., Zu_erey, J. C., Floreano, D., Jul. 2012. The airburr: A flying robot that can exploit collisions. In: International Conference on Complex Medical Engineering (CME). pp. 569–574. https://doi.org/10.1109/iccme.2012.6275674

Briod, A., Przemyslaw, K., Christophe, Z. J., Dario, F., 2014. A collision-resilient flying robot. Journal of Field Robotics 31 (4), 496–509. https://doi.org/10.1002/rob.21495

Briod, A., Przemyslaw, K. M., Adam, K., Jean-Christophe, Z., Dario, F., Dec. 2015. Vertical take-off and landing aerrial vehicle. Patent US 2015/0360776 A1, Ecole Polytechnique Federale de Lausanne (EPFL), Washington, DC: US.

Daler, L., Garnier, A., Briod, A., Jun. 2016. Vertical take-off and landing aerial vehicle. Patent US 2016/0001875 A1, Ecole Polytechnique Federale De Lausanne, Washington, DC: US.

Elfeky, M., Elshafei, M., Saif, A.-W. A., Al-Malki, M. F., Aug. 2016. Modeling and simulation of quadrotor uav with tilting rotors. International Journal of Control, Automation and Systems 14 (4), 1047–1055. https://doi.org/10.1007/s12555-015-0064-5

Escareño, J., Salazar, S., Lozano, R., 2006a. Modelling and control of a convertible VTOL aircraft. In: Proceedings of the 45th IEEE Conference on Decision and Control. pp. 69–74. https://doi.org/10.1109/CDC.2006.376915

Escareño, J., Sanchez, A., Garcia, O., Lozano, R., 2008b. Triple tilting rotor mini-uav: Modeling and embedded control of the attitude. In: American Control Conference. pp. 3476–3481. https://doi.org/10.1109/ACC.2008.4587031

Flores, G., Lozano, R., 2013. Transition flight control of the quad-tilting rotor convertible mav. In: International Conference on Unmanned Aircraft Systems (ICUAS). pp. 789–794. https://doi.org/10.1109/ICUAS.2013.6564761

Garcia, P., Lozano, R., Dzul, A., 2006. Modelling and control of mini-flying machines. Vol. 48. Springer London. https://doi.org/10.1109/taes.2012.6324687

Jacinto-Villegas, J. M., Satler, M., Filippeschi, A., Bergamasco, M., Ragaglia, M., Argiolas, A., Niccolini, M., Avizzano, C. A., Oct. 2017. A novel wearable haptic controller for teleoperating robotic platforms. IEEE Robotics and Automation Letters 2 (4), 2072–2079. https://doi.org/10.1109/LRA.2017.2720850

Keith, C., S. Repasky, K., L. Lawrence, R., Jay, S., Carlsten, J., 2009. Monitoring effects of a controlled subsurface carbon dioxide release on vegetation using a hyperspectral imager. International Journal of Greenhouse Gas Control 3, 626–632. https://doi.org/10.1016/j.ijggc.2009.03.003

Klaptock, A., 2012. Design of flying robots for collision absorption and self-recovery. Ph.D. thesis, École Polytechnique Fédérale de Lausanne-Switzerland. https://doi.org/10.1002/erv.1116

Lefort, P., Hamann, J., 1995. L’Hélicoptère. Théorie et Pratique. CHIRON, Paris.

Lin, C. E., Supsukbaworn, T., 2017. Development of dual power multirotor system. International Journal of Aerospace Engineering 2017, 1–19. https://doi.org/10.1155/2017/9821401

Liu, Z., He, Y., Yang, L., Han, J., 2017. Control techniques of tilt rotor unmanned aerial vehicle systems: A review. Chinese Journal of Aeronautics 30 (1), 135–148. https://doi.org/https://doi.org/10.1016/j.cja.2016.11.001

Lozano, R., 2013. Unmanned Aerial Vehicles: Embedded Control. Vol. 42 of ISTE. Wiley. https://doi.org/10.1002/esp.4142

Mendelow, B., Muir, P., Boshielo, B., Robertson, J., 2007. Development of e-juba, a preliminary proof of concept unmanned aerial vehicle designed to facilitate the transportation of microbiological test samples from remote rural clinics to national health laboratory service laboratories. South African Medical Journal 15, 1021–1030. https://doi.org/10.1002/lom3.10222

Mohamed, M. K., Lanzon, A., 2012. Design and control of novel tri-rotor uav. In: Proceedings of 2012 UKACC International Conference on Control. pp. 304–309. https://doi.org/10.1109/CONTROL.2012.6334647

Motlagh, N. H., Bagaa, M., Taleb, T., Feb. 2017. UAV-based iot platform: A crowd surveillance use case. IEEE Communications Magazine 55 (2), 128–134. https://doi.org/10.1109/MCOM.2017.1600587CM

Nex, F., Remondino, F., Mar. 2014. UAV for 3d mapping applications: A review. Applied Geomatics 6 (1), 1–15. https://doi.org/10.1007/s12518-013-0120-x

Perlo, P., Bollea, D., Finizio, R., Carvignese, C., Balocco, E., Dec. 2005. VTOL micro-aircraft. Patent US 6,976,653 B2, C.R.F Societa Consortile per Azioni, Washington, DC: US.

Prouty, R., Jan. 2003. Helicopter performance, Stability, and Control. Krieger.

Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D., Jan. 2011. UAV photogrammetry for mapping and 3d modeling-current status and future perspectives. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII-1/C22. pp. 25–31. https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-25-2011

Sanchez, A., Escareño, J., Garcia, O., Lozano, R., 2008. Autonomous hovering of a noncyclic tiltrotor UAV: Modeling, control and implementation. IFAC Proceedings Volumes 41 (2), 803 – 808. https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.00138

Sanchez-Fontes, E., Jan. 2016. Diseño y modelado de un vehículo esférico aéreo autónomo. Master’s thesis, Facultad de Ingeniería de la Universidad Autónoma del Estado de México, Toluca, México.

Segui-Gasco, P., Al-Rihani, Y., Shin, H. S., Savvaris, A., May 2014. A novel actuation concept for a multi rotor uav. In: International Conference on Unmanned Aircraft Systems (ICUAS). Vol. 74. pp. 173–191. https://doi.org/10.1007/s10846-013-9987-3

Senkul, A. F., Altug, E., 2016. System design of a novel tilt-roll rotor quadrotor UAV. Journal of Intelligent & Robotic Systems 84 (1), 575–599. https://doi.org/10.1007/s10846-015-0301-4

Shames, I. H., Apr. 1996. Engineering Mechanics: Statics and Dynamics, 4th Edition. Prentice Hall.

Tilli, A., Montanari, M., Jan. 2001. A low-noise estimator of angular speed and acceleration from shaft encoder measurements. ATKAAF 42, 169–176.

Villegas, J. M. J., Avizzano, C. A., Ruffaldi, E., Bergamasco, M., 2015. A low cost open-controller for interactive robotic system. In: 2015 IEEE European Modelling Symposium (EMS). pp. 462–468. https://doi.org/10.1109/EMS.2015.75

Watts, A. C., Perry, J. H., Smith, S. E., Burgess, M. A., Wilkinson, B. E., Szantoi, Z., Ifju, P. G., Percival, H. F., 2010. Small unmanned aircraft systems for low-altitude aerial surveys. Journal of Wildlife Management 74 (7), 1614–1619. https://doi.org/10.2193/2009-425

Whittaker, E., McCrae, W., Feb. 1989. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511608797

Yuksek, B., Vuruskan, A., Ozdemir, U., Yukselen, M. A., Inalhan, G., 2016. Transition flight modeling of a fixed-wing VTOL UAV. Journal of Intelligent & Robotic Systems 84 (1), 83–105. https://doi.org/10 .1007/s10846-015-0325-9

Descargas

Publicado

01-07-2020

Cómo citar

Sanchez-Fontes, E., Avila Vilchis, J., Vilchis-González, A., Saldivar, B., Jacinto-Villegas, J. y Martínez-Mendez, R. (2020) «Nuevo vehículo aéreo autónomo estable por construcción: configuración y modelo dinámico», Revista Iberoamericana de Automática e Informática industrial, 17(3), pp. 264–275. doi: 10.4995/riai.2020.11603.

Número

Sección

Artículos